Sommet (théorie des graphes)

En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe.

Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille.

Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins.

Types de sommet

A small example network with 8 vertices and 10 edges.
Réseau de huit sommets (dont un isolé) et 10 arêtes.

Le degré d'un sommet v, noté 𝛿(v), est le nombre d'arêtes incidentes à ce sommet ou le nombre de voisins de v.

Un sommet isolé est un sommet dont le degré vaut zéro, c'est-à-dire un sommet qui n'est lié à aucun autre sommet. On appelle feuille un sommet dont le degré vaut un.

Dans un graphe orienté, on distingue le degré entrant, noté 𝛿(v), du degré sortant, noté 𝛿 +(v). Un sommet source est un sommet dont le degré entrant vaut zéro tandis qu'un sommet flot est un sommet au degré sortant nul.

Liens internes

  • icône décorative Portail de l'informatique théorique
  • icône décorative Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons – Attribution – Partage à l’identique. Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.