Logarithme itéré

En informatique, le logarithme itéré d'un nombre n, noté (lu "log star" ou "log étoile"), est le nombre de fois que le logarithme doit lui être appliqué avant que le résultat soit inférieur ou égal à 1. Cette fonction est utilisée pour décrire la complexité de certains algorithmes, notamment en algorithmique distribuée.

La figure présente la courbe du logarithme népérien. On a log 4 = 1.38, puis en reportant la valeur sur l'axe des abscisses par zig zag, on a log 1.38 = 0.32. On a appliqué le logarithme deux fois, donc log* 4 = 2 pour le logarithme itéré en base e.

Définition

Le logarithme itéré de base b peut être défini par :

Sur les nombres réels positifs, le super-logarithme continu (l'inverse de la tétration) est essentiellement équivalente :

Le tableau suivant donne les valeurs du logarithme itéré (en base 2) :

Si est dans l'intervalle... Alors vaut :
0
1
2
3
4
5

Propriétés

Cette fonction croît extrêmement lentement. Une fonction usuelle en informatique théorique qui croît encore plus lentement est la réciproque de la fonction d'Ackermann. Ces deux fonctions sont d'ailleurs liées, puisque le logarithme itéré est l'un des niveaux de la hiérarchie de la réciproque d'Ackermann[1].

Utilisations

Notes et références

  1. Gabriel Nivasch, « Inverse Ackermann without pain », .
  2. Référence de l'article de Linial : (en) Nathan Linial, « Locality in Distributed Graph Algorithms », SIAM Journal on Computing, vol. 21, no 1, , p. 193-201.
  3. Sanjoy Dasgupta, Christos H. Papadimitriou et Umesh Vazirani, Algorithms, McGraw-Hill, Inc., (ISBN 0073523402 et 9780073523408, lire en ligne)
  • icône décorative Portail de l'analyse
  • icône décorative Portail de l'informatique théorique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons – Attribution – Partage à l’identique. Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.